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ABSTRACT

A no-reference video quality metric for High-Definition video is in-
troduced. This metric evaluates a set of simple features such as
blocking or blurring, and combines those features into one parameter
representing visual quality. While only comparably few base feature
measurements are used, additional parameters are gained by evaluat-
ing changes for these measurements over time and using additional
temporal pooling methods. To take into account the different char-
acteristics of different video sequences, the gained quality value is
corrected using a low quality version of the received video. The met-
ric is verified using data from accurate subjective tests, and special
care was taken to separate data used for calibration and verification.
The proposed no-reference quality metric delivers a prediction ac-
curacy of 0.86 when compared to subjective tests, and significantly
outperforms PSNR as a quality predictor.

Index Terms— Visual quality metric, no-reference, AVC/H.264,
SVC, HDTV

1. INTRODUCTION

Humans are able to judge the visual quality of a processed and dis-
torted video without ever seeing the reference video. But subjective
testing is time consuming, expensive, and can not be part of most
practical applications. While full-reference (FR) and also reduced-
reference (RR) video quality metrics are available that provide useful
results, many systems or applications can not access the reference
video and therefore require a no-reference (NR) evaluation. Addi-
tionally, the reference video may not even exist, as in the case of
synthetic views generated for user selectable viewpoint applications.
Furthermore, metrics using reference video sequences can not de-
liver accurate results, if the visual quality of the reference is not
known. NR video quality evaluation has been the goal of many con-
tributions in the field of visual quality metrics, but so far only lim-
ited results have been achieved. Major drawbacks of the presented
approaches up to now are: only very few verification results that do
not allow reasonable conclusions (e.g. [1]) , the use of the same data
for design and verification of the metric (e.g. [2]) or the use of bit
rate as quality indicator without using different encoders or at least
different encoder settings (e.g. [3]). One popular approach for NR
quality evaluation is the use of watermarks (e.g. [4]). Watermarks,
however, need access to the reference video, and therefore can not
be classified to be true NR metrics. Methods to predict the PSNR
from the coded bit-stream (e.g. [5]) have been shown to work very
well for High-Definition (HD) video, but are limited to the prediction
accuracy of PSNR as a visual quality estimator.

In this contribution we present a no-reference video quality met-
ric for HD video, encoded with AVC/H.264 and, partly, with its ex-
tension SVC. The metric can be split into two consecutive parts: in
the first stage, we extract a set of features from the video, analyze the

statistical distribution of these features to generate a set of parame-
ters, and combine the parameters to a quality value. In the second
stage, we correct this quality prediction using an additional video,
created by encoding the received video to a low visual quality. The
idea behind this correction step is, that while we do not have access
to the original video, we can still generate a video with known qual-
ity. By comparing the received video to this low quality version, we
are able to deduce the quality of the received video.

Our NR metric is verified using a set of seven different HD video
sequences at a resolution of 1920 × 1080 pixel. These sequences
were encoded using substantially different encoding settings to avoid
tailoring the method to a special set of encoder options resulting in
video exhibiting a wide range of different artifacts. The sequences
were evaluated in carefully designed subjective tests, using a high
number of observers and a controlled environment. In order to avoid
the verification of the metric by using the same data used to build the
model, we applied a cross validation approach, also known as “leave
one out”.

Section 2 describes the feature extraction from the video and the
combination of the gained feature parameters into a quality value,
before we introduce the proposed correction step in section 3. The
verification process is described in section 4, before the results and
a conclusion are presented in section 5 and section 6, respectively.

2. A NO-REFERENCE METRIC FOR HD VIDEO

The set of features extracted is very similar to the one used for our
RR metric in [6]. The features are: blockiness, bluriness, activity
and predictability. The first three features are measurements for
what takes place in every single frame of the video. Predictability
describes what occurs between the single frames of a video, and is
based on the assumption, that visual quality is perceived differently,
if transitions between neighboring frames are smooth or if abrupt
changes appear.

2.1. Feature extraction

The algorithm for blur measurement [7] determines the width of an
edge and calculates the blur by assuming that blur is reflected by
wide edges. As blur is something natural in a fast moving video
(motion blur), this measurement is adjusted by a simple piecewise
linear correction if the video contains high amount of fast motion.

The algorithm for determining the blocking [8] calculates the
horizontal and vertical blockiness by applying a Fourier transform
along each line or column. The unwanted blockiness can be easily
detected by the location in the spectra. The measured spectrum is
compared to a smoothed version of the spectrum. Blockiness should
appear as peaks at distinct frequencies. For both blur and blocking it
is sufficient to only take into account the luminance channel.
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The activity is assesed by measuring the amount of details ac-
cording to the BTFR metric [9]. The percentage of turning points
along each line and each row are calculated and then averaged to
obtain one single value. As the amount of details noticed by an ob-
server decreases with increasing motion, the activity measurement is
adjusted if high motion is detected in the video. For simplicity, this
measurement is performed only on the luminance channel.

In order to determine the predictability, a predicted image is cre-
ated using a simple motion compensation based on block match-
ing [10]. The actual image and its prediction are then compared
block by block. To avoid, that single pixels dominate the SAD mea-
surement, both images are filtered using first a Gaussian blur filter
and a median filtering afterward. The output is the percentage of
blocks that are not noticeable different.

To reduce the computational complexity, all features are ex-
tracted only for a sub-region of the frames. This sub-region is
defined by the center cut of 1280 × 720 pixel of the 1920 × 1080
pixel frames.

2.2. Pooling

Discussion with test subjects who rated the distorted video se-
quences revealed, that there are three major artifacts which de-
termine the visual quality of the video: bluriness, blocking, and
obvious change in visual quality between neighboring frames.

The flickering effect is partly captured by the feature predictabil-
ity, but analysis has shown, that this measurement can not describe
the whole effect. Therefore we also calculate the difference in blur
and blocking between neighboring frames, as these measurements
vary significantly if two frames have a considerably different visual
quality. Hence we use six different measurements: blur, blocking,
activity, predictability, dblur and dblocking.

For each of these we calculate the mean for each frame and ad-
ditional values describing the statistical distribution of these mea-
surements for the whole video: maximum, minimum, 0.9 and 0.1
percentiles. This extra temporal pooling is motivated by the fact,
that strong artifacts affect visual quality more than simple averag-
ing suggests. Also the distribution of the feature measurements is
not described well enough using only the mean. After dropping fea-
tures that did not show a significant variation for different video se-
quences, we gained 22 different parameters, describing the statistical
properties of the video sequences.

2.3. Model building

We used methods provided by multivariate data analysis to examine
the data, and build stable prediction models out of these parameters.
This approach was first proposed by Miyahara [11]. In particular, we
used the principal component analysis (PCA) to get a more compact
representation of the video, and a partial least squares regression
(PLSR) to find the relationship between the principal components
and the visual quality. We have already shown in [6], that this leads
to stable and useful prediction models.

Before building the prediction model, all extracted parameters
are first centered around their mean, as the interesting information
does not lie in the absolute values, but in the variation of the param-
eters across different video sequences. Also all parameter values are
scaled to have a standard deviation of 1.

The visual quality prediction ŷ can then be calculated as

ŷ = b0 + p · b. (1)

b is the column vector of the single estimation weights bm for each
parameter pm. b0 is the model offset.

Table 1: Weights for selected parameters

Parameter none Seeking ParkJoy Umbrellaa

blurmean -0.003 -0.036 -0.201 -0.056
blockingmean -0.112 -0.146 -0.065 -0.169
activitymean 0.413 0.148 0.747 0.406
dblurmax -0.491 -0.181 -0.455 -0.317
dblockingmax -0.460 -0.281 -0.121 -0.431
a Video sequence left out during the model building step

2.4. Cross calibration and model stability

The accuracy of video quality metrics should be tested using previ-
ously unknown video sequences, not included in the model building
step. Therefore we did not build only one single model, but seven
different ones, one for each of the seven different sequences used. As
the database with only seven video sequences is comparably small,
some of the sequences do have a significant influence on the mod-
els. Excluding one sequence from the model building step results in
a significant change of the estimation weights bm. To gain a more
stable model, a larger number of different original video sequences
are needed.

Selected weights for different models are given in Table 1. The
weights show the influence of one parameter on the model. Large
absolute values show, that this parameter does have a high influence
on the visual quality. Negative values show, that while this param-
eter increases, the visual quality decreases. This is obvious for the
values for blur and blocking. The data in Table 1 also shows, that
the weights for the mean blur value differ by a factor of more than
60, depending on which video was excluded from the calibration set
during the model building process. While the variance is not huge
for other parameters, there is still a difference by a factor of more
than four.

Hence each model delivers good prediction results in two cases:

1. The quality of a video included in the model building step
should be predicted.

2. The quality of a unknown video very similar to one of the
video sequences used to build the model should be predicted.

While the first case does not occur in real world scenarios, the sec-
ond case happens but is very unlikely, especially if the database is
comparably small. But even if a bigger database were available, it
could happen, that one video to be evaluated has significant different
properties than any of the video sequences used during the model
building process.

3. CORRECTION STEP

To handle such cases, we propose to introduce a correction step sim-
ilar to the correction step used in our RR metric [6]. It consists of
evaluating a high quality and low quality version of the video using
the same quality metric used to rate the actual video of interest. With
this information, the general relationship between visual quality and
the metric’s output for the actual video is then estimated.

3.1. Additional video sequences

Clearly, we do not have access to the original video or any version
of the video with high visual quality. But we can produce a low
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Fig. 1: No-reference prediction system

quality version of the received video. This version gives us some
information about the “sensitivity” of this video to coding artifacts.
Moreover, we know its expected quality, and by evaluating it we can
perform a correction of the predicted quality. Hence we need for
this correction the mean estimated quality value of the low quality
version of the calibration video sequences ylow, and the standard
deviation σlow. To avoid overcompensation, the quality prediction
for this video, ŷlow, is first clipped to ylow±3σlow and the correction
is then applied as follows:

ŷ = ŷ − (ŷlow − ylow) ∗ 0.75. (2)

The factor of 0.75 was added to give more weight to the original pre-
diction compared to the correction step introduced by the low qual-
ity instance of the video and determined experimentally. The overall
prediction system is shown in Fig. 1. The low quality video was gen-
erated using a very simple fixed QP encoder for AVC/H.264. Using
a very high QP of 40 ensures that the visual quality of this video is
reasonably low. Finally, we slightly correct the prediction values ŷ
using a fixed sigmoid nonlinear correction with a = 1.0, b = 0.5,
c = 0.2, as for very good or very bad quality, subjective testing
does have a nonlinear quality rating, and thus ratings do not reach
the boundaries of the scale, but are saturated before. The general
sigmoid function is given as

ŷ = a/(1 + e(−(ŷ−b)/c)) (3)

This correction function is nearly linear over a wide quality range
and is not adapted to the actual data, but is a fixed part of the quality
metric.

3.2. Effect of the correction step

The effect of the correction step is explained best on the video se-
quence “Seeking”. This video shows blur values that are signifi-
cantly above the values that were detected for all other sequences.
Especially the maximum blur values are out of range: the mean value
of blurmax for all other sequences is around 3.4, whereas for “Seek-
ing” this value is above 20. As a result of these “out of range” values,
the predicted visual quality for the sequences (excluding “Seeking”)
is negative, whereas the visual quality normally should be in a range
from 0 to 1. Calculating the visual quality for the low quality ver-
sions of these video sequences reveals that the quality was grossly
underestimated: whereas ylow was found to be very close to zero,
ylow,Seeking was between -1.5 and -2.1. Using the above described
correction step, the quality prediction ŷ was within the desired range
of 0 to 1.

This correction step also significantly increases the prediction
accuracy. It is interesting, that this correction is not necessary, if
no cross validation is applied, and thus the same data is used for
calibration and verification. Hence, the information given by the
low quality instance enables the quality prediction of previously un-
known video. This is also reflected by the low prediction accuracy
achieved if the correction step is omitted (Table 2).

4. VERIFICATION

Verification of the proposed metric was done using seven different
original HD video sequences encoded using the AVC/H.264 and
SVC reference encoder. Significantly different encoder settings were
applied to avoid training the models to one special encoder setting
and also to account for a large quality range, resulting in bit rates
from 4.5 Mbit/s up to 30 Mbit/s representing a quality range from
“not acceptable” to “perfect” (0.21 to 0.94 on a 0 to 1 scale) and
a total of 44 data points. From the SVT test set, the sequences
CrowdRun, IntoTree, OldTownCross, ParkJoy, Seeking and Um-
brella were used and additionally the sequence AlohaWave. All
video sequences have a spatial resolution of 1920× 1080 pixel and
a temporal resolution of 25 or 50 frames per second (fps).

The subjective tests were performed at the video quality evalua-
tion laboratory of the Institute for Data Processing at the Technische
Universität München according to ITU-R BT.500 [12]. Some were
performed as part of the official verification tests of SVC [13]. The
tests were carried out using a variation of the standard DSCQS test
method as proposed in [14]. The 95% confidence intervals of the
subjective votes are below 0.07 on a 0 to 1 scale for all single test
cases, the mean 95% confidence interval is 0.04.

5. RESULTS

The performance of the proposed no-reference metric is compared
to PSNR and two FR metrics. The FR metrics are Edge-PSNR [9]
and the video quality metric (VQM) according to Annex D of ITU-
T J.144 [9]. For the VQM the general model and, due to limitations
of the available VQM reference implementation, a progressive fram-
erate of 25 fps was used for all video sequences.

In order to compare the prediction performance of different ap-
proaches the Pearson correlation, the Spearman rank order correla-
tion and the root mean squared error (RMSE) was determined. For
calculating the RMSE first order fitting was applied for the compar-
ison metrics, while no fitting was used for the proposed NR method.
A cross validation approach was used, ensuring that the results for
every video are generated using a model calibrated with a database
that does not contain this particular video. For comparison, results
for the model if no cross validation had been applied are also given.

The results in Table 2 show, that the proposed NR metric (Fig. 2)
significantly outperforms PSNR. The high prediction accuracy of
0.86 is not a result of fitting the model to the actual data, but shows
the real prediction accuracy, as a cross validation approach was used
to gain the performance numbers. The importance of using such a
cross validation approach is shown by the unrealistically high pre-
diction accuracy of 0.95 if this step is omitted. The effectiveness
of the correction step as proposed in section 3, is shown by the fact,
that without this correction, the quality for some sequences is grossly
over- or underestimated, and the correlation to subjective results is
rather low.

The rather bad performance of the ITU-T J.144, Annex D VQM
compared to PSNR might be explained by its limitation to 25 fps,
considering we also included material with originally 50 fps.



Table 2: Prediction results

Pearson Spearman RMSE(a)

NR no cross validation 0.95 0.94 0.06
NR no correction step 0.51 0.66 0.35

Proposed NR 0.86 0.85 0.11
PSNR 0.69 0.69 0.14
ITU-T J.144, Annex D 0.62 0.69 0.15
Edge-PSNR 0.70 0.70 0.13
(a) After first order fitting for all comparison metrics, no fitting for the

proposed NR metric

6. CONCLUSION

We proposed a new no-reference quality metric for High-Definition
video. The metric is based on a set of simple features and respec-
tive parameters that are extracted from the video and a subsequent
correction step. This correction step uses a low quality video that is
produced by encoding the received video. The metric was verified
on a set of HD video sequences that were encoded with AVC/H.264
or SVC. The visual quality of these video sequences was determined
in precise subjective tests and a cross validation approach was used
to separate the data used for calibration and verification. Results
show, that the proposed no-reference metric significantly outper-
forms PSNR, and performs equally well as the best full-reference
comparison metric.

Selection of the features and parameters that are used for the no-
reference metric is not explicitly based on a Human Visual System
(HVS) model, but we selected the features and parameters that are
best suited to describe the variation of the video sequences and the
quality variation. Also the model building step does not follow a
HVS based approach, but is based on data modeling methods such as
the PCA and the PLSR. The presented results show the effectiveness
of this approach.

Whereas the first part of the metric does not contain any sub-
stantially new aspects, and is very similar to existing no-reference
metrics [1, 2], the presented approach differs in two main aspects
from these works. Firstly, the introduced correction step allows to
predict the quality of previously unknown sequences, and signifi-
cantly increases the prediction accuracy. Secondly, the data used to
calibrate the metric was separated from the data used for verification,
thus resulting in a meaningful verification of the metric.
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